

Top pair production distributions at the Tevatron

—includes Afb, differential cross sections —

Hadron Collider Physics Symposium 2012

Nov. 13th, 2012

Kyoto University, Kyoto, Japan

Yuji Takeuchi (University of Tsukuba)

on behalf of the CDF and DØ collaborations

Top Quark Properties

$t\bar{t}$ Production at Tevatron

Dominant process at Tevatron

10~20% contribution at Tevatron Dominant process at LHC

Tevatron is suitable to the study of $q\bar{q}$ annihilation process in $t\bar{t}$ production.

Also interested in kinematical distributions, differential XS other than inclusive XS.

$t\bar{t}$ Differential XS $(d\sigma/dp_T^t)$

- $\ell + \ge 4$ jets channel (286 cand.)
- $t\bar{t}$ recons. by kinematical fitting
- Unfolding method to correct to parton level

$$(N_i^{\mathrm{Parton}}) = A^{-1}S^{-1}(N_j^{\mathrm{Rec}} - N_j^{\mathrm{Bkg}})$$

 A_i : Acceptance for *i*-th bin
 S_{ij} : Response from *i*-th bin to *j*-th
recons. bin

Good agreement w/ NLO, NNLO

$t\bar{t}$ Differential XS $(d\sigma/dM_{t\bar{t}})$

- $\ell + \ge 4$ jets channel (650 cand.)
- $t\bar{t}$ recons. by kinematical fitting
- Unfolding method

No evidence beyond the SM

 $\kappa/M_{\rm Pl} > 0.16$ (95% CL) for $G \to t\bar{t}$ ($m_1 = 600 {\rm GeV}$) in RS model

$t\bar{t}$ F-B Asymmetry $(d\sigma/d\Delta y)$

- ℓ + ≥4 jets channel (2653 cand.)
- $t\bar{t}$ recons. by kinematical fitting
- Unfolding method
- $A = 0.164 \pm 0.039 \pm 0.023$ 2.0 σ away from NLO
- $A(\Delta y)$ has linear dep. on Δy Slope is larger than NLO pred. (2.2 σ away)

$t\bar{t}$ F-B Asymmetry $(d^2\sigma/d\Delta y \cdot dM_{t\bar{t}})$

arXiv:1211.1003 PRD submitted.

• $A(M_{t\bar{t}})$ has linear dependency on $M_{t\bar{t}}$ Slope is larger than NLO pred. (2. 4σ away)

Other AFB measurements at Tevatron

Recons. Level

Top Polarization and Correlations at $t\bar{t}$ production

Because top quark decays before losing polarization, t/\bar{t} polarization and their correlations can be measured as angular distribution of decay products

from $t\bar{t}$.

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta_+ d \cos \theta_-} = 1 + C \cos \theta_+ \cos \theta_-$$

More sensitive to $t\bar{t}$ production mechanism than other kinematic variables.

 \rightarrow Might give a hint on $t\bar{t}$ F-B asymmetry.

Spin Correlation at CDF

- Dilepton channel (334 cand.)
- Extract C_{beam} from reconstructed 2D $(\cos\theta_+, \cos\theta_-)$ distribution

- ℓ + \geq 4 jets channel (725 cand.)
- up/down quark identification up-type is more energetic
- Extract C_{beam} from $\cos\theta_+ \times \cos\theta_-$

CDFnote 10

(\Leftrightarrow SM pred.: $C_{\text{beam}} \sim 0.78$)

Consistent with SM, but statistically limited...

Spin Correlation at DØ

- Dilepton (485 cand.) $\oplus \ell + \ge 4$ jets (729 cand.)
- Matrix element method
 - Event probabilities on SM-correlation ME (P_c) and No-correlation ME (P_u)
 - Discriminant R=Pc/(Pc+Pu)

Measured fraction of SM correlation f^{SM} = 0.85 \pm 0.29 (f=1: SM, f=0: no correation)

Exclude the no-correlation hypo. at 99.84% CL (3.1 σ)

Top polarization in $t\bar{t}$ production

Top polarization in $t\bar{t}$ production

Top polarization along to beamline axis

No evidence beyond the SM

Summary

- Tevatron gives unique opportunity to study $q\bar{q} \to t\bar{t}$ production process for detail.
 - Kinematical distributions of $t\bar{t}$, $d\sigma/dX$ imply more information.
- $t\bar{t}$ AFB measurements at Tevatron suggest a contribution from new physics.
- Thanks to top quark short life-time, we can probe top quark polarization at $t\bar{t}$ production as well.
 - This might give more information on AFB.

Backup

Reconstructed $p_T(t\bar{t})$

Top/anti-top polarizations at $t\bar{t}$ production

Dominant process at Tevatron

helicity conservation

 $tar{t}$ has correlations in their polarizations

— in different way for $q\bar{q}$ and gg processes —

Spin Correlation in $q\bar{q} \rightarrow t\bar{t}$ process

Top quark polarizations can be probed via lepton flight direction

Lepton asymmetry in $t\bar{t}$ events at Tevatron

CDF dilepton

$$\Box A^{\text{raw}}(\Delta \eta) = 0.14 \pm 0.05$$

D0 dilepton

$$\Box A^{\text{raw}}(\Delta \eta) = 0.03 \pm 0.06$$

D0 l+jets

$$A^{\text{raw}}(q \cdot \eta) = 0.14 \pm 0.04$$

